High-resolution dynamic 31 P-MRSI using a low-rank tensor model.
نویسندگان
چکیده
PURPOSE To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. METHODS The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. RESULTS We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm3 nominal resolution, 30 s/frame at 9.4T). CONCLUSIONS Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
منابع مشابه
Dynamic 31P–MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T
Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scann...
متن کاملPreliminary Study of MR Diffusion Tensor Imaging of Pancreas for the Diagnosis of Acute Pancreatitis
OBJECTIVES To evaluate the feasibility of differentiating between acute pancreatitis (AP) and healthy pancreas using diffusion tensor imaging (DTI) and correlate apparent diffusion coefficient (ADC) /fractional anisotropy (FA) values with the severity of AP. MATERIAL AND METHODS 66 patients diagnosed with AP and 20 normal controls (NC) underwent DTI sequences and routine pancreatic MR sequenc...
متن کاملEstimation of Compartmental Signals from Limited Fourier Samples
INTRODUCTION Resolution is a key factor for quantitative analysis of MR images, and is of particular relevance in experiments such as MR spectroscopic imaging (MRSI), dynamic imaging, diffusion tensor imaging, and functional imaging. In these experiments, noise and data acquisition time can severely limit the achievable spatial resolution for standard Fourier-based image reconstruction. In prac...
متن کاملTensor Regression Networks with various Low-Rank Tensor Approximations
Tensor regression networks achieve high rate of compression of model parameters in multilayer perceptrons (MLP) while having slight impact on performances. Tensor regression layer imposes low-rank constraints on the tensor regression layer which replaces the flattening operation of traditional MLP. We investigate tensor regression networks using various low-rank tensor approximations, aiming to...
متن کاملCompressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI.
High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal-to-noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high-resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2017